Corrigé

1) Etude du polynôme du second degré

$$f(x) = 3x^2 + 3x - 6$$

Posons a = 3, b = 3 et c = -6.

a) Le discriminant.

$$\Delta = b^2 - 4ac = 3^2 - 4 \times 3 \times (-6) = 81.$$

b) Les racines.

Puisque $\Delta > 0$, l'équation f(x) = 0 admet deux solutions dans \mathbb{R} .

$$\begin{cases} s = \frac{-b - \sqrt{\Delta}}{2a} & = \frac{-3 - \sqrt{81}}{6} = \frac{-12}{6} = -2\\ s' = \frac{-b + \sqrt{\Delta}}{2a} & = \frac{-3 + \sqrt{81}}{6} = \frac{6}{6} = 1 \end{cases}$$

c) La factorisation

$$f(x) = a(x-s)(x-s') = 3(x+2)(x-1)$$

d) Le tableau de signes.

Sachant a > 0 et f(x) admettant deux racines, on a

x	$-\infty$		-2		1		$+\infty$
f(x)		+	0	_	0	+	

e) Equation de l'axe de symétrie.

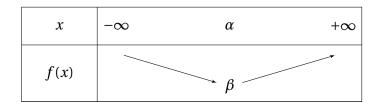
$$x = \alpha \text{ avec } \alpha = -\frac{b}{2a} = -\frac{3}{2 \times 3} = -\frac{1}{2}.$$

f) Coordonnées du sommet.

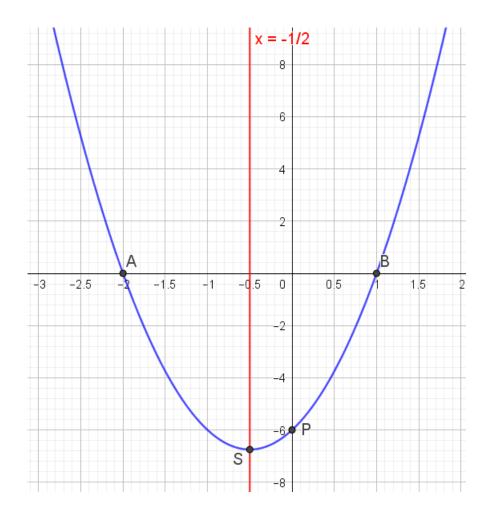
$$(\alpha; \beta)$$
 avec $\alpha = -\frac{b}{2a} = -\frac{1}{2}$ et $\beta = f(\alpha) = -\frac{\Delta}{4a} = -\frac{81}{12} = -\frac{27}{4} = -6,75$.

g) <u>Tableau des variations</u>.

Sachant a > 0,



h) Représentation graphique.



2) Etude du polynôme du second degré

$$g(x) = 4x^2 + 12x + 9$$

Posons a = 4, b = 12 et c = 9.

a) Le discriminant.

$$\Delta = b^2 - 4ac = 12^2 - 4 \times 4 \times 9 = 0.$$

b) Les racines.

Puisque $\Delta = 0$, l'équation g(x) = 0 admet une seule solution dans \mathbb{R} .

$$s = -\frac{b}{2a} = -\frac{12}{2 \times 4} = -\frac{12}{8} = -\frac{3}{2}$$

c) La factorisation

$$f(x) = a(x-s)^2 = 4\left(x + \frac{3}{2}\right)^2$$

d) Le tableau de signes.

Sachant a > 0 et g(x) admettant une seule racine, on a

x	$-\infty$		$-\frac{3}{2}$		+∞
g(x)		+	0	+	

e) Equation de l'axe de symétrie.

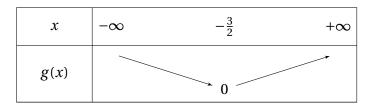
$$\overline{x = \alpha \text{ avec } \alpha = -\frac{b}{2a} = -\frac{3}{2}}.$$

f) Coordonnées du sommet.

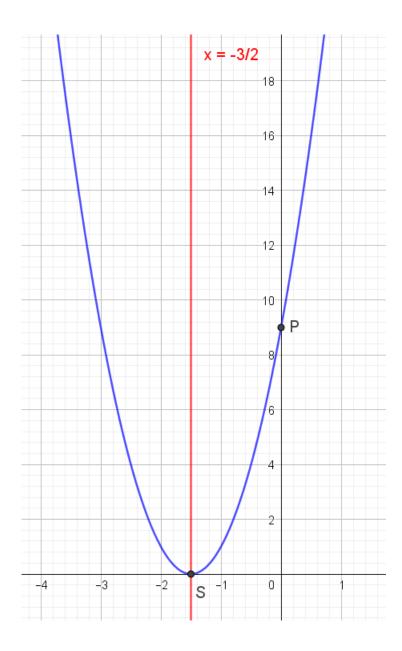
$$(\alpha;\beta)$$
 avec $\alpha=-\frac{b}{2a}=-\frac{3}{2}$ et $\beta=g(\alpha)=-\frac{\Delta}{4a}=0$ soit $S\left(-\frac{3}{2};0\right)$.

g) Tableau des variations.

Sachant a > 0,



h) Représentation graphique.



3) Etude du polynôme du second degré

$$h(x) = -3x^2 + x - 2$$

Posons a = -3, b = 1 et c = -2.

a) Le discriminant.

$$\Delta = b^2 - 4ac = 1^2 - 4 \times (-3) \times (-2) = 1 - 48 = 1 - 24 = -23.$$

b) Les racines.

Puisque $\Delta < 0$, l'équation h(x) = 0 n'admet pas de solution dans \mathbb{R} .

c) La factorisation

Pas de factorisation utile.

d) Le tableau de signes.

Sachant a < 0 et h(x) n'ayant pas de racine, on a

x	$-\infty$	+∞
h(x)	_	

e) Equation de l'axe de symétrie.

$$x = \alpha \text{ avec } \alpha = -\frac{b}{2a} = -\frac{1}{2 \times (-3)} = \frac{1}{6} \sim 0.17.$$

f) Coordonnées du sommet.

$$(\alpha; \beta)$$
 avec $\alpha = -\frac{b}{2a} = \frac{1}{6}$ et $\beta = h(\alpha) = -\frac{\Delta}{4a} = -\frac{-23}{4 \times (-3)} = -\frac{23}{12} = -1.91$.

g) Tableau des variations.

Sachant a < 0,

X	$-\infty$	$\frac{1}{6}$	+∞
h(x)		$-\frac{23}{12}$	*

h) Représentation graphique.

